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Abstract

Medical countermeasure stockpiles in the United States are designed to support healthcare workers 

and the public during public health emergencies; they include supplies of personal protective 

equipment (PPE). As part of typical PPE manufacturing processes, appropriate test methods are 

used to ensure that the devices provide adequate protective performance. At the time of 

manufacture, performance is often measured and weighed against an objective standard of quality, 

resulting in a pass or fail attribute being assigned to individual PPE items and thence to production 

lots. Incorporating periodic performance testing for stockpiled PPE can ensure that they maintain 

their protective qualities and integrity over time while in storage. There is an absence of guidance 

regarding how to design quality assurance programs for stockpiled PPE. The applicability of the 

Lot Quality Assurance Sampling (LQAS) approach to stockpiled PPE was examined in a previous 

study that compared and contrasted different sample sizes in recovering the true percentage of 

defective units in large lots in the LQAS framework. The current study carries this line of inquiry 

forward by integrating PPE degradation over time and comparing different sampling time intervals 

in recovering the true underlying degradation rate. The results suggest that product degradation is 

more easily detected when tested at shorter time intervals and for higher degradation rates. They 

further suggest that sampling interval groupings can be made based on the proficiency with which 

they recover the true underlying degradation rate.
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IN THE UNITED STATES, stockpiles of medical supplies and equipment at the federal, state, and 

local levels were created with funding and initiatives associated with the Public Health 

Security and Bioterrorism Preparedness and Response Act of 2002.1 Since then, large 

volumes of personal protective equipment (PPE) have been acquired. PPE such as 

respirators, surgical gowns, and gloves are intended to protect healthcare and emergency 

responders from the hazards of caring for individuals with contagious diseases and contain 

the spread of such diseases.2–4 Predictions of the amount of PPE and the rate at which it will 

be needed during a public health emergency suggest that PPE consumption will exceed the 

amount of product that manufacturers can produce.3,5–14 Therefore, millions of units of PPE 

are stored across the country in readiness for rapid response in facility-level and public 

health (local, state, federal) stockpiles.

While it is reasonable to assume that PPE provided through the normal supply chains will 

give the promised protection, component materials may degrade while in a stockpile.15–22 

An example is the commonly stockpiled N95 filtering facepiece respirator (FFR), 

recommended for protection against a variety of hazards that may be faced during public 

health emergencies. Most N95 FFRs incorporate filtering media embedded with electrostatic 

charges. The embedded electrostatic charge may dissipate during extended stockpiling, 

thereby potentially decreasing the filtration efficiency.21,23–25 Thus, stockpiled N95 FFRs, 

as well as other PPE, may degrade to an unacceptable level while in the stockpile, at a rate 

influenced by variations inherent in varying designs, materials of construction, materials 

used in packaging, and stockpile storage conditions.

Given the likelihood of long-term storage, the potential for degradation, and the possible 

lack of control over storage conditions, many PPE manufacturers provide shelflife and 

expiration guidelines. However, when stored in a suitable environment, stockpiled products 

may be effective well beyond their labeled expiration dates, and development of a suitable 

shelf-life extension program would be beneficial.

Unsubstantiated stockpile testing schemes may prove unnecessarily expensive. In addition to 

the costs of performing the tests and the PPE used in the testing, over-testing without careful 

sampling plan design may lead to discarding an excessive number of relatively good lots due 

to sampling variation.26

In a previous study, we examined the applicability of a Lot Quality Assurance Sampling 

(LQAS) approach to stockpiled PPE and posited it as a mechanism to manage the quality of 

stockpiled PPE over time and potentially realize a PPE-specific shelf-life extension program.
27 Given the potential stability of PPE when stored in a suitable environment, our previous 

article compared and contrasted different sample sizes in terms of their ability to accurately 

estimate a fixed true quality level over a restricted number of samples. However, in light of 

the potential for PPE to degrade over time, true levels of lot quality can be dynamic and a 

potentially moving target. Identifying stockpiled PPE that are degrading, and accurately 

identifying the rate of degradation, may be a desirable component to a stockpiled PPE 

LQAS. For example, degradation of numerous models and lots in a localized area in the 

stockpile may indicate localized storage conditions that are less than adequate. Additionally, 

Dubaniewicz et al. Page 2

Health Secur. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identification of unacceptable levels of degradation in a single model and/or a single lot can 

allow for targeted recycling, thereby limiting waste.

Therefore, questions remain regarding how often sampling should be done in order to detect 

degradation processes and to estimate the rate at which the PPE is degrading. The current 

study addresses this missing piece by integrating PPE degradation over time and comparing 

the consistency of different sampling time intervals in recovering the simulated degradation 

rate. The primary research questions of the current study are:

1. Can repeated performance testing of PPE samples detect degradation in 

stockpiled PPE?

2. Do the trends seen over repeated sampling accurately reflect the rate of 

degradation?

3. Do different time intervals of repeated performance testing differ in terms of the 

proficiency with which they recover the degradation rate?

Methods

Computer Simulation

The research questions posed were answered through a series of statistical simulations. The 

study used a computer simulation to “create” batches of stockpiled PPE over the course of 

their lifetime with known quality levels at each stage in their life cycle. It also allows for the 

simulated PPE samples to be sampled to determine if the parameters that were “created” can 

be recovered. This technique makes it possible to vary applicable quality parameters (ie, the 

actual percent of passing units in a lot and the rate at which that percent declines as 

degradation occurs over time) and create real-life stockpile contexts. A common desktop 

mathematical software package, R version 3.5.0, was used to conduct the simulation and 

analyze the results.28 The steps taken in the simulation are briefly summarized in Figure 1.

In order to integrate PPE degradation over time, lots or batches of stockpiled PPE were 

created and tracked over the course of their lifetime. Lots over time were simulated through 

the use of sets containing the total number of PPE items out of lots of 100,000 that would 

pass a performance test. A set for each degradation parameter was generated, containing 

entries for the true number of passing units every month over a 100-year lifespan. At year 

zero, all PPE in each lot were considered to have “passed” an applicable performance test 

(eg, the tests used by NIOSH for respirator certification or the tests designated by the FDA 

for clearing surgical or isolation gowns). At subsequent times, a proportion of the lot was set 

to “fail” the performance test. In total, 9 different linear degradation rates were simulated in 

which a fixed number of additional units become defective each year. These rates were 

0.01%, 0.05%, 0.1%, 0.25%, 0.5%, 1.0%, 2.0%, 5.0%, and 10% and corresponded to an 

additional 10, 50, 100, 250, 500, 1,000, 2,000, 5,000, and 10,000 units becoming defective 

every year. The choice of using a linear degradation model was made for conceptual 

simplicity. Exponential degradation was also modeled as a comparison, but other forms of 

nonlinear degradation could have been selected instead.
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Once these series of sets were created to represent the PPE lots with known degradation 

rates over the course of their lifetime, it was then possible to collect random samples from 

them over time. Sampling time intervals of 1 month, 3 months, 6 months, 9 months, 1 year, 

2 years, 3 years, 4 years, 5 years, and 10 years were examined. Although some of the time 

intervals examined are not likely to be selected for use in actual stockpiles, they were chosen 

for comparison purposes. A fixed sample size of 32 PPE units was selected to be used for 

each sample. As such, 32 random numbers from the lot of 100,000 (representing single units 

of PPE) were selected from each designated time point with replacement. The sample fail 

rate was then computed according to Equation 1:

p = x
n′ (1)

where p is the observed sample fail rate, x is the number of PPE items that failed in the 

sample, and n represents the sample size (ie, the total number of PPE items contained in 

each sample—in this case, 32). A linear regression of the sample fail rates for each time 

interval was computed for each simulated lot. This process was iterated 150 times. Thus, 150 

distinct trials were conducted for each parameter in the study, and trends across these trials 

could be used for the analysis designed to answer the research questions.

Results

Detecting and Determining Degree of Degradation

In response to the first research question posed, concerning the utility of periodic testing, the 

results of the simulation suggest that repeated performance testing of PPE samples can 

detect degradation in stockpiled PPE, but it depends on the time interval of repeated testing 

along with the magnitude of the degradation. In order to examine this research question, 

linear regressions were performed on sample results over a 15-year period. For each 

individual trial, the percent of PPE passing for each sample was used as the dependent 

variable, and time was used as the independent variable. The standardized regression 

coefficients, or slopes of the fitted lines, directly measured the predicted degradation rate. 

Because each lot was simulated to degrade over time, the measured pass rate would be 

expected to decrease in consecutive samples, and a negative regression slope should result. 

A negative regression slope in any given trial of repeated testing, therefore, suggests that the 

simulated degradation was detected. A slope of zero, or a positive slope, would denote a trial 

in which there was no detection of any degradation—even though degradation did exist. This 

does not necessarily mean that no defective units were found, but rather that linear 

regression did not find a consistent increase in defective units over time. These failures to 

detect the applied degradation could be considered “false negatives”—in other words, testing 

did not discern the decrease in the quality of the lot. If the entire lot were tested at each time, 

the regression slope would recover the degradation rate applied to the lot. For smaller 

samples, variability due to sampling will affect the accuracy of the recovered slope. Figure 2 

provides an illustration of one of the regressions derived from the study in which a negative 

standardized regression coefficient was found.
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Table 1 reports the number of trials out of 150 in which sampling failed to detect 

degradation for specific sampling intervals, denoted by the rows, and the true linear 

degradation rate, denoted by the columns. This table clearly shows that degradation is 

detected more often as the sampling interval gets smaller and the true degradation rate 

increases.* For the degradation rates of 2% and higher, each of the sampling intervals was 

able to “see” the lot degradation through sample-to-sample trends in every trial. When 

degradation was very low, it was undetectable by most sampling intervals. For example, the 

0.01% degradation was not detected in some trials for each of the sampling intervals studied. 

This is partially a symptom of the duration of time examined. The 0.01% annual degradation 

lot results in an additional 10 failing units every year for the 100,000-item lot. At the end of 

the regression period—15 years—the 0.01% annual degradation results in only 150 failing 

items in the entire lot after 15 years, a 0.15% failure or 99.85% pass rate in the lot after 

aging. Hence, the lack of degradation detection is not automatically concerning for this low 

degradation rate considering the very small amount of degradation over just 15 years.

Worth considering, however, is the potential impact of degradation rates that some sampling 

intervals effectively recover while others do not. For example, a linear annual degradation 

rate of 0.25% results in an additional 250 PPE items failing each year from the lot. Over the 

course of the 15-year period, this adds up to 3,750 defective PPE items out of the lot. 

Depending on the type of PPE and the intended use, this level of degradation can be 

consequential. Therefore, it may be important to consider that the linear regression on 

annual sampling detected this level of degradation in 98% of the trials, with only 3 false 

negatives out of 150 trials, as seen in Table 2. This can be compared to 89% of the trials 

when samples are taken every 2 years (17 false negatives out of 150 trials) and 79% of the 

trials when sampling is done every 4 years (with 32 false negatives).

Table 2 presents linear regressions over the first 5 years (instead of 15 as seen in Table 1). As 

with the 15-year period shown in Table 1, degradation is detected more often with smaller 

sampling intervals and higher true degradation rates. But with less data gathered over time 

and higher true pass percentages at the end of the period, it is not surprising that the number 

of trials in which no degradation was detected generally increased for each sampling interval 

*Several variations to the simulation, which are not reported, were performed as robustness checks. In one, an initial stockpile percent 
passing of 80% was used instead of the assumption that all PPE would pass testing at time zero. Such an assumption is slightly biased 
toward “detection” through finding a negative slope due to the first sample’s being fixed at 32/32 passes. The heteroscedasticity 
resulting from the impossibility of sampling higher than 100% passing was mostly avoided by lowering the initial percent passing far 
enough to allow room for sampling variability above the true pass percent. As expected, the trials in which no degradation was 
detected were more numerous across the board in this simulation. Also of note, breaking down no degradation detected into 
standardized regression coefficients of zero and positive values, the 80% initial percent passing simulation resulted in many more 
positive values, but fewer zero values. However, the same patterns of detection regarding the effect of sampling intervals and 
degradation rates were still strongly shown.
In another variation to the simulation, the sample size taken at any given time point was adjusted (2, 6, 12, 18, 24, 48, 72, 96, 120, and 
240) for each sampling interval (1 month, 3 months, 6 months, 9 months, 1 year, 2 years, 3 years, 4 years, 5 years, and 10 years) so 
that the total number of individual units sampled would be equal over the examined period of time, regardless of sampling interval. In 
this version, the degradation was still detected more often as the true degradation rate increased, but the relationship between detection 
and the sampling intervals disappeared. This suggests that the timing of sampling may be less important than the number of samples 
tested over the period, although more frequent sampling would presumably be better for detecting sudden changes in the overall 
quality of a lot not seen in the constant linear degradation rates simulated. It should also be considered that changing the individual 
sampling sizes in this version of the simulation confounds the sampling intervals with the effects of different inherently discrete 
probability distributions associated with sampling different sizes. For example, when only 2 samples are taken monthly, there are only 
3 possible outcomes: 0%, 50%, and 100% pass rate. There are 241 possible outcomes for the corresponding sample size for the 10-
year interval in this simulation.
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considered. Still, a sampling interval of 1 year and a linear degradation rate of 1%, both 

values in the middle of the ranges examined, resulted in just 6 out of 150 trials failing to 

detect degradation, or a 96% detection success rate. It should also be noted that degradation 

cannot be detected on a 5-year period for the 10-year sampling interval, since this interval 

includes only the initial sample set, with no testing of degraded samples.

Having shown that degradation can be detected through repeated sampling of PPE 

stockpiles, it follows to examine how well the degradation rates recovered through sample-

to-sample trends conform to the specified rates. Table 3 contains the mean standardized 

regression coefficients for regressions performed over a 10-year period across 150 trials for 

each sampling interval and linear degradation rate. The values are all close to the true 

degradation rate simulated for each lot. In practical terms, when using repeated testing as a 

component of a stockpiled PPE LQAS, this finding suggests that the sample-to-sample 

trends seen (ie, the difference in the proportion passing from sample to sample) can be used 

to estimate the underlying degradation rate with some degree of confidence. Higher 

confidence can be placed in sampling intervals that consistently recovered degradation 

across the simulated degradation rates (shown in Tables 1 and 2).

The third research question posed was whether different time intervals of repeated sampling 

differ in terms of the consistency with which they recover the true lot degradation rate. The 

answer to this research question is “yes”: Time intervals did differ in terms of the 

consistency with which they estimated the degradation rate in the lot. Greater consistency 

(ie, lower variance in the estimated degradation rate) would imply more confidence in the 

predicted degradation rate.

Table 4 reports the results of pairwise comparisons of the variances for the standardized 

regression coefficients taken from regressions over the first 10-year period for 150 trials of 

each sampling interval and linear degradation rates of 0.25%, 1.0%, and 5.0%. An informal 

visual inspection of the table suggested that rough groupings of testing time intervals 

displayed similar characteristics. Based on the pairwise comparisons of the variance in 

regression coefficients, the following time interval groupings emerged: Group 1: 6 months, 9 

months, and 1 year; Group 2: 2 years and 3 years; and Group 3: 4 years and 5 years. These 

groupings are more pronounced in the 1.0% and 5.0% degradation rate contexts and suggest 

that there are similarities in consistency among the time intervals within the same group. 

They also suggest that some gains in reliability can be expected as the group number 

decreases. Omitted from the table, the time intervals of 1 month, 3 months, and 10 years 

produced unique reliability patterns and were not amenable to grouping with other time 

intervals.

Additional Analysis

As discussed, the primary research questions were answered using PPE lots that degrade in a 

linear fashion. Given the possibility that PPE degradation can be nonlinear, an exponential 

function was also used to set the degradation curve over time, and linear regressions were 

performed to predict a rate of degradation. Figure 3 depicts the results of this process for a 

particular trial.
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Tables 5 and 6 report the same results as Tables 2 and 3, but with exponential degradation 

rates. The similar results suggest that degradation can still be detected and that similar 

patterns in sampling intervals hold for nonlinear degradation.

Discussion

The fundamental purpose of stockpile quality assurance is to detect potential problems with 

the stored supplies arising from degradation, ideally before users are put at risk. Stockpile 

quality assurance programs must balance economy with the need for quality assurance. 

Over-testing can also lead to excessive discarding of relatively good PPE lots due to random 

sampling variability and, thus, can prove expensive and potentially wasteful, in both the 

costs of performing the tests and the number of PPE units used in the tests.

By contrast, in a well thought out quality assurance process, the costs associated with the 

early disposal and frequent replacement of stockpiled equipment can be balanced against the 

costs of testing, while providing adequate evidence that stockpiled equipment will provide 

the expected level of protection when needed. The current study has shown that well-

designed periodic testing schemes can detect degrading product in stockpiles before 

tolerable limits are exceeded, allowing better replacement planning in stockpile 

management.

With appropriate care, a stockpile quality tracking scheme—incorporating both current and 

prior testing results—could provide continued assurance of stockpile performance, 

improving confidence and economy over a single sample of LQAS testing results. The 

simulation presented here shows the ability of one such evaluation protocol. In many cases, 

trends observed in quantitative test results could be incorporated into continuing stockpile 

evaluations. Simulations such as the ones presented here could incorporate observed real-

world degradation rates to further refine sampling rates and criteria. For instance, criteria 

could be developed to identify lots with testing results that significantly differ from the 

average, potentially allowing identification of poor storage conditions or other issues. A 

wide variety of PPE would need to be covered by a comprehensive stockpile monitoring 

protocol, and our work demonstrates that it is possible to develop such guidelines.

Conclusions

In this article and our previously published article,27 we sought to provide evidence to 

determine if stockpiled PPE quality can be reasonably estimated by testing a single sample, 

to determine if repeated sampling can detect degradation, and to provide some initial 

guidance to stockpile managers in choosing between possible sample sizes and sampling 

intervals as they consider testing stockpiled PPE. The current study focused on determining 

the reliability of different time intervals in recovering rates of PPE lot degradation. It was 

found that degradation can be seen through trends in repeated sampling over time. Time 

intervals, other than 1 month, 3 months, and 10 years, were broken into groups in terms of 

how reliably the actual degradation rates were predicted. Group 1—6 months, 9 months, and 

1 year—was comprised of intervals that were similar and had the best reliability in 
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recovering the true degradation rates, while Group 2 had less reliability and Group 3 had the 

least.

It is recognized that stockpile resource availability, the volume of PPE at individual 

stockpiles, and the number of lots per manufacturer/model can vary widely, and these 

parameters may heavily influence the time interval options appropriate for individual 

stockpiles. As such, the conclusions provided are not recommendations or guidelines, but 

rather information and tools to help inform stockpile managers when developing plans for 

testing the quality of their stockpiles. It is also recognized that the administration of an 

LQAS for stockpiled PPE can be costly and time consuming. However, the alternative—

replacing massive amounts of expired, unused, and potentially good quality PPE—will be 

even more costly in many cases.
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Figure 1. 
Simulation Steps

Dubaniewicz et al. Page 10

Health Secur. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
An example linear regression over 10 years for yearly sampling intervals and 1.0% linear 

degradation rate
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Figure 3. 
An example linear regression over 10 years for 6-month sampling intervals applied to an 

underlying exponential rate of 5.0%
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